COMPOSITE MATERIALS: FROM THEORY TO APPLICATIONS

1st Edition

Authors:

Dr. Anshuman Srivastava

Professor, Dept. of Mechanical Engineering Shambhunath Institute of Engineering and Technology, Prayagraj

Dr. Nidhi Asthana

Women Scientist WoS-A, DST New Delhi BBAU, Lucknow

Ubaid Ahmad Khan

Assistant Professor Dept. of Mechanical Engineering Shambhunath Institute of Engineering Technology, Prayagraj

Title of the Book: Composite Materials: From Theory to Applications

Edition: 1st, 2024

Copyright @ 2024 Authors

No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owners and publisher.

Disclaimer

The authors are solely responsible for the contents published in this book. The publisher does not take any responsibility for the same in any manner. Errors, if any, are purely unintentional and readers are requested to communicate such errors to the authors or publisher to avoid discrepancies in the future.

ISBN: 978-81-968820-1-3

Printed by: National Printers, Lucknow

Published by: Amber Publishers, Near Daddy Cool Bakery, Sarfarazganj, Lucknow-03, U.P. Mob: 7839315372 Email: amber.publishers.lko@gmail.com Website: www.amberpublishers.in

PREFACE

Composite materials stand at the crossroads of various disciplines, embodying an intersection where diverse fields converge. The surge in student enrollment in courses pertaining to this domain is indicative of a burgeoning interest and recognition of its interdisciplinary nature.

Textbooks typically focus on either the mechanics or materials science dimensions of composite materials. However, "Composite Materials From Theory to Applications" uniquely delves into the materials science aspects of this field. Several factors influenced the decision to undertake this book project the considerable interest in composite materials, the interdisciplinary character of the subject, the imperative to reeducate practicing engineers, and the lack of a comprehensive introductory-level textbook.

Chapter 1 serves as an introduction to the subject matter. Subsequently, Chapters 2 through 4 delve into various types of composites, including MMC, PMC, and CMC. Chapter 5 focuses on the mechanical characterization of composites, while Chapter 6 explores their physical characterization. Machining operations performed on composites are discussed in Chapter 7, and Chapter 8 covers non-destructive testing techniques specific to composites. Chapter 9 delves into recent advancements and the future potential of composites, while Chapter 10 addresses about the natural fiber and their treatments.

Although fundamental concepts have been addressed in previous textbooks, the author deemed it crucial to augment the material with in-depth discussions on topics that have witnessed substantial advancements in recent decades. This encompasses subjects such as the machining of composites, non-destructive testing of composites, and life cycle assessment. Furthermore, the book explores advanced methods of producing composites, including additive manufacturing (3D printing), pultrusion, resin transfer molding (RTM) etc.. Additionally, the text book integrates a multitude of physical and mechanical characterization techniques.

The book could serve as a foundational resource for both graduate and postgraduate students specializing in material sciences. Additionally, it will provide essential prerequisites for Ph.D. students engaged in research within the field of composite materials.

ACKNOWLEDGEMENT

"We are immensely grateful to everyone who contributed to the realization of this book. Your support, encouragement, and expertise have been invaluable throughout this journey.

First and foremost, we express our deepest gratitude to our families for their unwavering love, patience, and understanding. Their constant encouragement has been a source of strength and motivation.

We extend our heartfelt thanks to Dr. Dheerendra Kumar, President of UTTHAN, and Dr. Kaushal Kumar, Secretary of UTTHAN, for their motivation and support during the writing process. Their encouragement was instrumental in shaping this work.

We are indebted to Prof. J.P. Mishra, Director of R&D at SIET Prayagraj, for his expertise and valuable insights, which greatly enriched the content of this book. His contributions have been greatly appreciated.

Special thanks to all our friends and colleagues who provided encouragement, support, and feedback throughout this journey. Your kindness and support have meant the world to us.

Finally, we express our gratitude to the readers of this book. Your interest and engagement are the ultimate rewards for this endeavor.

Thank you all for being part of this journey."

[Authors]

Table of Content		
Chapters	Page No.	
Chapter-1 : Introduction	1	
1.1 Desired Characteristics	2	
1.2 Components of Composite	2	
1.3 Classification of Composite Materials	7	
1.4 Matrix and its Functions	14	
1.5 Reinforcement and its Functions	16	
1.6 Characteristics of Composite Materials	18	
1.7 Applications of Composites	20	
Chapter-2 : Metal Matrix Composites	22	
2.1 Reinforcement Materials in Metal Matrix Composites	22	
2.1.1 Ceramic Reinforcements	22	
2.1.2 Metallic Reinforcements	23	
2.1.3 Carbon-Based Reinforcements	23	
2.1.4 Hybrid Reinforcements	23	
2.1.5 Intermetallic Reinforcements	24	
2.1.6 Functionally Graded Materials (FGMs)	24	
2.2 Key Considerations for Selecting Base Metals for MMCs	25	
2.3 Characteristics of Metal Matrix Composites	27	
2.4 Reinforcement Materials for MMCs	29	
2.5 Fabrication of Metal Matrix Composites	30	
2.5.1 Powder Metallurgy	31	
2.5.2 Liquid Metal Infiltration (LMI)	35	
2.6 Secondary Processing for Metal Matrix Composites	38	
2.7 Special Fabrication Techniques for MMCs	39	
2.7.1 Electro-Spinning	40	
2.7.2 Spark Plasma Sintering (SPS)	41	
2.7.3 Directional Solidification	42	
2.7.4 Rapid Solidification Processing	43	
2.7.5 Additive Manufacturing (3D Printing)	44	
2.7.6 In-Situ Fabrication	46	
2.7.7 Self-Propagating High-Temperature Synthesis (SHS)	47	
2.7.8 High-Energy Ball Milling	48	
2.7.9 Vacuum Infiltration	49	
2.7.10 Microwave Sintering	49	

2.7.11 Ultrasonic Consolidation	50
Chapter -3 : Polymer Matrix Composites	52
3.1 Polymer Matrix	52
3.1.1 Thermoset Polymers	52
3.1.2 Thermoplastic Polymers	53
3.1.3 Rubber-based Polymers	53
3.1.4 Aromatic Polymers	53
3.1.5 Fluoropolymers	54
3.1.6 Silicone Polymers	54
3.2 Reinforcing Materials	54
3.3 Classification of Polymer Matrix Composites	54
3.3.1 Based on Polymer Matrix	55
3.3.2 Based on Reinforcing Material	55
3.3.3 Based on Applications	56
3.4 Selecting a Matrix for Polymer Matrix Composites	56
3.5 Process Design of Polymer Matrix Composites	59
3.6 Prepregging	61
3.7 The Rule of Mixtures	63
3.7.1 Stiffness (Modulus) Rule of Mixtures	64
3.7.2 Strength Rule of Mixtures	64
3.7.3 Density Rule of Mixtures	64
3.8 Processing of Polymer Matrix Composites	65
3.8.1 Compression Molding	65
3.8.2 Transfer Molding	67
3.8.3 Pressure Bag Process	68
3.8.4 Vacuum Bag Process	70
3.8.5 Filament Winding	71
3.8.6 Sheet Molding Compound (SMC)	73
3.8.7 Dough Molding Compound (DMC)	74
3.8.8 Pultrusion Process	76
3.8.9 Injection Molding	78
3.8.10 Reaction Injection Molding (RIM)	80
3.8.11 Reinforced Reaction Injection Molding (RRIM)	82
3.8.12 Hand layup Method	84
3.8.13 Sandwich Method	86
3.8.14 Lamination Method	87

3.9. Advantages of PMC's	89
3.10 Applications of Polymer Matrix Composites	89
Chapter-4 : Ceramic Matrix Composites	91
4.1 Composition	91
4.2 Manufacturing Methods	92
4.2.1 Chemical Vapor Infiltration (CVI)	92
4.2.2 Liquid Silicon Infiltration (LSI)	95
4.2.3. Slurry Infiltration Process (SIP)	98
4.2.4 Polymer Impregnation and Pyrolysis (PIP)	100
4.2.5 Melt Infiltration	102
4.2.6 Direct Metal Oxidation (DIMOX)	104
4.2.7 Spark Plasma Sintering (SPS)	107
4.2.8 Powder Processing Method	110
4.3 Properties of Ceramaic Matrix Composites	112
4.4. Applications of Ceramaic Matrix Composites	113
4.5. Challenges	113
Chapter-5 : Mechanical Characterisation of Composites	115
5.1 Tensile Test	115
5.2 Flexural Test	118
5.2.1 Three-Point Bending	118
5.2.2 Four-Point Bending	120
5.3. Compression Test	120
5. 4 Shear Test	123
5.5 Impact Test	125
5.5.1 Charpy Impact Test	126
5.5.2 Difference between Izod and Charpy test-	128
5.6 Hardness Test	130
5.7 Fatigue Test	132
5.8 Creep Test	133
5.9 Fracture Toughness Test	135
Chapter 6 : Physical Characterisation of Composites	138
6.1 Differential Scanning Calorimetry (DSC)	138
6.2 Thermogravimetric Analysis (TGA)	141
6.3 Thermomechanical Analysis (TMA)	141
6.4 Dynamic Mechanical Analysis (DMA)	147
6.5 Thermal Conductivity Measurement	150

6.6 Dilatometry	152
6.7 Thermal Gravimetric Analysis-Mass Spectrometry (TGA-	154
MS)	
6.8 Dielectric Thermal Analysis (DETA)	156
6.9 Scanning Electron Microscopy (SEM)	158
6.10 Transmission Electron Microscopy (TEM)	161
6.11 Atomic Force Microscopy (AFM)	164
6.12 X-ray Diffraction (XRD)	167
6.13. Microcomputed Tomography (Micro-CT)	170
6.14 Confocal Laser Scanning Microscopy (CLSM)	170
6.15 Optical Microscopy	175
Chapter-7 : Machining Operations on Composites	178
7.1 Cutting	178
7.1.1 Abrasive Waterjet Cutting	178
7.1.2 Ultrasonic Machining	182
7.1.3 Laser Cutting	184
7.1.4 Mechanical Cutting	184
7.1.5 Waterjet Cutting:	185
7.2 Drilling	185
7.3 Conventional Drilling	185
7.3.1 Mechanical Drilling	185
7.3.2 Vibration-Assisted Drilling	186
7.3.3 High-Speed drilling	188
7.4 Nonconventional Drilling	188
7.4.1 Ultrasonic Drilling	189
7.4.2 Laser drilling	190
7.5 Milling	190
7.6 Turning	191
7.7 Grinding	191
Chapter-8 : Non-Destructive Testing of Composites	194
8.1 Visual Inspection	194
8.2 Ultrasonic Testing (UT)	196
8.3 Radiographic Testing (RT)	198
8.4 Thermographic Testing	200
8.5 Shearography	201
8.6 Acoustic Emission Testing (AE)	202
8.7 Eddy Current Testing (ECT)	204

8.8 Microscopy and Digital Image Analysis	206
Chapter-9 : Recent Advances and Future Potential for Composites	208
9.1 Carbon Nanotube (CNT) Reinforcements	208
9.2 Ceramic Fiber Reinforcement	208
9.3 Nanocellulose Reinforcement	209
9.4 Graphene-Enhanced Composites	210
9.5 MXene-Enhanced Composites	212
9.6 Self-Healing Composites	214
9.7 Smart Composites	218
9.8 Lightweight Structural Composites	219
9.9 Green and Biodegradable composites	219
9.10 Nano-Composites	221
9.11 Hybrid Polymer Composites	224
9.12 Future Potential of Composites	230
9.12.1 Sustainable Materials	230
9.12.2 Additive Manufacturing (3D Printing)	231
9.12.3 Light weighting for Electric Vehicles	231
9.12.4 Aerospace Innovation	231
9.12.5 Healthcare and Biotechnology	232
9.12.6 Energy Storage and Renewable Energy	232
9.12.7 Space Exploration	232
9.12.8 Customization and Mass Production	232
Chapter 10 : Natural Fiber-Reinforced Polymer Composites and	234
their Treatment Methods	
10.1 Natural Fibers	234
10.2 Different Treatment Methods for Natural Fibers	235
10.3 Advantages of natural Fibers over Synthetic Fiber	236
10.4 Classification of Natural Fibers	237
10.5 Chemical Composition of Fibers-	239
10.6 Natural Fiber's Treatments	242
10.7 Conclusions and Future Prospects	245